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ABSTRACT 

During the past ten years Vector Quantization (VQ) has developed from 
a theoretical possibility promised by Shannon's source coding theorems 
into a powerful and competitive technique f o r  speech and image coding 
and compression at medium to low bit rates. In this survey, the basic 
ideas behind the design of vector quantizers are sketched and some 
comments made on the state-of-the-art and current research efforts. 

INTRODUCTION 

VQ can be thought of as the vector extension of Pulse Coded Modulation 
(PCM) wherein real vectors instead of real scalars are converted into 
digital representations which in turn can be used to produce a 
reproduction of the original signal. The goal, of course, is to 
produce a digital representation of the signal which can be 
communicated on a digital communication channel or stored in a 
digital medium. Representing analog data digitally introduces 
distortion, and hence a major design goal is to minimize the 
distortion given constraints on communication or storage capacity and 
complexity. 
consecutive samples from a continuous waveform, rectangular subblocks 
of an image intensity or density, three dimensional vectors consisting 
of, say, two-by-two squares of pixels three frames deep (or twelve 
pixels in the vector), or they may be feature or parameter vectors 
extracted from the data which represent its important attributes, such 
as Fourier transformed vectors or the Linear Predictive Coded (LPC) 
representation of a speech signals. 

The vectors to be digitized may be a collection of 
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Although Shannon's source coding theorems imply that performance 
improvement can always be obtained by coding vectors instead of 
scalars (I' ' 3 '  55  62) , the most popular systems for analog-to-digital 
conversion and data compression perform the quantization operation 
only on scalars, although they often effectively operate on vectors by 
imbedding the quantizer in a feedback loop (as in predictive 
quantization) or by,first performing a linear transform on the data 
(as in transform coding). While such systems have the advantage of 
simplicity, they are necessarily suboptimal in the Shannon sense. 
Furthermore, the definition of l1sirnplicity1l has been enormously 
extended with modern circuit design and implementation techniques: 
DSP chips and VLSI have rendered feasible algorithms that were 
considered absurdly complicated only ten years ago. 

In addition to the complexity issue, another impediment to the use of 
VQ systems has been the lack of design algorithms. Unlike the dual 
problem of channel coding or error control coding, quantization is 
fundamentally nonlinear and the algebraic approaches successful in 
error correction are of little help in the digitization problem. 
Since the middle of the last decade, a variety of design techniques 
and tricks have been developed for VQ and real time hardware has been 
designed to perform sophisticated variations of these systems. This 
paper presents a brief overview of the fundamental design principles 
of the basic VQ structure and its variations. Deeper discussions of 
many of the issues and systems may be found in tutorial 
articles (4'5'6). 
found(7). 

A thorough development of VQ systems may be 

VQ is a form of lllossyll data compression in contrast to lllosslesslf 
data compression or noiseless coding. Noiseless codes are perfectly 
invertible and necessarily variable length codes. The most popular 
noiseless coding algorithms are Huffman coding, Rice codes, Lempel-Ziv 
Codes, and arithmetic codes( 55-61) . 
especially for the compression of computer programs and data files 
which cannot tolerate errors. Noiseless compression is usually 

These codes are in common use, 
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required in such situations where the compression system must be 
designed without any knowledge of the structure or end use of the 
original digital signal. 
with an analog signal (such as microphone, camera, or analog sensor 
output) and produces a digital output is necessarily a lossy code as 
a continuous voltage cannot be reproduced perfectly from a digital 
representation. 
systems are lossy, the goal of any such system is to provide the best 
quality (minimum loss) within the constraints of the system. As 
unpleasant as purposefully introducing distortion into a 
representation might sound to a user, it is preferable to the 
potential large insertion of uncontrolled distortion or the complete 
loss of the data caused by overwhelming available digital 
communication or storage capacity. In other words, if you are 
generating gigabits but the available communication channel only takes 
megabits, then you either compress to the best acceptable quality or 
you may get no useful data at all. VQ is an approach to minimizing 
the loss for a given communication or storage rate. It is based on 
the Shannon theory approach of defining and minimizing an objective 
distortion criterion for a given code rate. The minimization is 
accomplished using algorithms developed in communications, statistics, 
and cluster analysis. Next two sections summarize the basic approach. 

On the other hand, any system which begins 

Given that all such analog-to-digital conversion 

MATHEMATICAL MODELS 

The mathematical model for an analog-to-digital conversion system or 
for a data compression system is a source code subject to a fidelity 
criterion. A source {X(n);n=l,2,...} is a discrete time signal which 
in general is vector-valued. Let A denote the alphabet or collection 
of possible values of X(n)., f o r  example, A may be k dimensional 
Euclidean vector space. For convenience we assume that the signal is 
a statistically 88nicett process (e.g., the law of large numbers holds). 
The basic results extend to more general processes. 

A code in the general sense is a mapping of the input sequence (X(n)) 
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into a binary sequence (the encoder) together with a mapping of the 
binary sequence into a reproduction sequence (Y(n)) (the decoder). 
(We assume the encoded sequence is binary for convenience, in general 
it need only be from a finite alphabet.) The rate (or resolution) R 
of the code is the number of bits or binary symbols transmitted or 
stored per source symbol. In general this rate can be fractional, 
although in some examples it is useful to focus on integral values. A 

block source code is a code where each input block or vector (X(lk), 
X(lk+l), ..., X((l+l)k-1)) is mapped into its binary code word in a way 
that does not depend on past or future actions of the encoder. The 
decoder is required to act in a similar fashion independently of past 
and future vectors. A block source code is also called a (memoryless) 
block quantizer or vector quantizer. The qualifier llmemorylessll 
reflects the fact that such codes operate on vectors in a memoryless 
fashion (although the clearly have memory with respect to the 

I individual symbols within the vectors). We will consider codes that 
I have memory, but the focus of Shannon theory is on memoryless codes. 

To measure the performance of a code, we assume a non-negative 
distortion measure d(x,y) which measures the cost of reproducing any x 
in A by some y in a reproduction alphabet B, which may or may not be 
the same as A .  The performance is measured by an average distortion, 
where the average may be a long term time average or an ensemble or 
probabilistic average. For convenience we represent both by I 

1 N  

N i=1 
AN = E [ - d(X(i), Y(i))]r 

where the expectation E can mean either a probabilistic average or a 
time average (which can be viewed as a special case of a probabilistic 
average in which every sample vector in a training sequence of length 
L has probability 1/L. Ideally a distortion measure should be 
analytically tractable, computable, and subjectively meaningful. In 
practice, these attributes must be balanced and a variety of choices 
exist. 
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Shannon's converse coding theorem and its generalizations imply that 
for any code for which these definitions make sense, A can be no 
smaller than the distortion-rate function D(R) of the source and 
distortion measure evaluated at rate R, a function defined by an 
information theoretic minimization which can be computed analytically 
or numerically or bounded for many interesting sources. Shannon also 
showed that performance arbitrarily near to D(R) could be achieved 
with block source codes, another name for VQ. Unfortunately, 
however, the proof of this result provided no indication of how to 
actually design a good code. This we explore shortly. 

MEMORYLESS VECTOR QUANTIZATION 

A s  described in the previous section,. a memoryless vector quantizer or 
block quantizer is in the Shannon terminology a length k block source 
code subject to a fidelity criterion; that is, it is a pair of 
mappings, an encoder E which maps k-dimensional input vectors X into 
binary vectors which we denote by their equivalent decimal 
representation j = 1,2, ..., M, and a decoder D which maps those binary 
vectors into reproduction vectors. For simplicity we assume that the 
binary vectors have dimension K and hence that the rate of the code is 
R = K/k bits per input symbol. To describe the operation of a block 
code d e f i n e  t h e  code book C= ( y  (j) = D ( j )  , j = 1,2, ..., M} as the 
collection of all possible reproduction vectors, and the code 
partition P = ( P(j):j=l, ..., M), where P(j) is the collection of all 
input vectors which are encoded into the binary vector j. The 
quantizer mapping Q( x )is defined as D(E(x)), that is, the overall 
action of the code. The term VQ is used to refer to combination of 
the encoder and decoder or, equivalently, the overall mapping Q. 
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The average distortion resulting from applying a vector quantizer to a 
source can be written using conditional averages as 

Recall that the expectation and the probabilities may come either from 
a probabilistic model or (more commonly) from a training sequence of 
typical data. A vector quantizer is optimal if it yields the smallest 
possible A over any quantizer with the same dimension and resolution. 
The above representation easily yields two necessary conditions for a 
VQ to be optimal. 

The Nearest Neighbor (Minimum Distortion) Condition 

A necessary condition for a VQ to be optimal is that the encoder be 
optimal for the decoder. If the 
decoder yields a code book C, then the encoder must be a nearest 
neighbor or minimum distortion mapping that satisfies 

This is equivalent to the following: 

E(x) =j only if d(x,y(j) ) I d(x,y(i)), a l l  i#j 

Thus given a decoder or, equivalently, a code book, the optimal 
encoder is the one which searches the entire code book and selects the 
binary vector corresponding to the minimum distortion available 
reproduction vector. 
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The Centroid Condition 

Define the centroid of a set S with respect to a distortion measure d 
and a probability distribution on X = ( X ( 1 ) ,  ... ,X(N)) by 

cent(s) = min-l E[~(X,Y)IXES] 
Y 

A necessary condition for a VQ to be optimal is that the decoder be 
optimal for the encoder. This is equivalent to the following: If the 
encoder implies a partition { P ( j ) ) ,  then the optimal decoder satisfies 

D ( j )  = cent( P ( j ) ) ;  all j .  

For example, in the case of mean squared error, the centroid is simply 
a conditional mean given that the input was mapped into the binary 
vector j .  This condition states that given an encoder, which can be 
considered as a partition of the input vector space, then the optimum 
decoder is the one which maps each received binary vector into the 
centroid of the region of the partition which is encoded into that 
binary vector. Note that unlike the encoder condition, this condition 
requires knowledge of the input signal distribution, knowledge that 
can come from a mathematical model or from a training sequence. 

MEMORYLESS VQ DESIGN 

Because of the nearest neighbor condition, a VQ is completely 
described by its code book. The two properties together provide a 
means of improving any given code book C: 

The Lloyd Iteration 

1. Given a code book C, form a nearest neighbor partition 
{ p ( j )  1 
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2. Given a partition (P(j)), form a new code book C ' =  

(cent(P(j)); j=1, ... , M). 

It is obvious that the above operation produces a new code book that 
is better than (at least no worse than) the original code book since 
each step can only improve performance. These properties were first 
observed for the mean squared error and scalar quantizers by 
Lukaszewicz and Steinhaus (8) and were independently found shortly 
thereafter by Lloyd(') , who developed an iterative algorithm for 
designing scalar quantizers with a mean squared error based on 
repeated use of the iteration. The basic idea extends immediately to 
vectors and is called the generalized Lloyd algorithm: 

The Lloyd VQ Design Algorithm 

0. Given an initial code book C ( 0 )  and a threshold a. 
Set A(0) = huge. Set k = 1. 

1. Use the Lloyd iteration to produce a new code book C ( k )  from 
C(k-1). 2. Evaluate the distortion 

Ak = E(min d(X,Y)) 
Y 

If 

quit. Otherwise replace k by k+l and continue. 

In most practical applications, one does not have a probability 
distribution, but does have a training sequence of data. In this case 
the algorithm can be run on the empirical distribution which assigns a 
probability of 1 / L  to each of L samples in the training sequence. In 
this case the expected distortion is replaced by a sample average. 
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Theorems can be proved to the effect that if the training sequence is 
long enough, the VQ designed will be close to that which would have 
been designed had the distribution been known (10,11) 

This algorithm was developed in the statistical literature under the 
name of the k-means algorithm by MacQueen (12) and was first applied 
to vector quantization in the two dimensional case with a mean squared 
error by Chen ( I 3 ) .  The algorithm was extended to general vector 
quantization with a variety of distortion measures by Linde, BUZO, and 
Gray (I4), who computed centroids for a variety of distortion measures 
and applied the algorithm to speech waveform and voice compression. 

A remaining issue is how to design the initial code book, which is in 
itself a code design problem. We now next describe several such 
techniques. In fact, these techniques can be used as an alternative 
to the Lloyd algorithm for designing a complete code, but such code 
books can always be improved by subsequent application of the Lloyd 
algorithm. 

Random Coding 

Perhaps the simplest conceptual approach towards filling a code book 
of M code words is to randomly select the code words according to the 
source distribution, which can be viewed as a Monte Carlo code book 
design. The obvious variation when designing based on a training 
sequence is to simply select the first M training vectors as code 
words. If the data is highly correlated, it will likely produce a 
better code book if one takes, say, every Nth training vector. This 
technique has often been used in the pattern recognition literature 
and was used in the original development of the k-means technique by 
MacQueen (I2). One can be somewhat more sophisticated and randomly 
generate a code book using not the input distribution, but the 
distribution which solves the optimization problem defining Shannon's 
distortion-rate function. In fact, the Shannon source coding theorems 
imply that such a random selection will on the average yield a good 

213 



I 
I code. Unfortunately, the code book will have no useful structure and 

may turn out to be quite awful. 

Observe that here "random codingff means only that the code book is 
selected at random: once selected it is used in the usual (nearest 
neighbor) deterministic way. 

Pruning 

A variation on the above use of a training sequence to populate a code 
is to form a code book recursively as follow: Putthe first vector in 
the training sequence in the code book. Then compute the distortion 
between the next training vector and the first code word. If it is 
less than some threshold, continue. If it is greater than the 
threshold, add the new vector to the code book as a codeword. 
Continue in this fashion: With each new training vector, find the 
nearest neighbor in the code book. If the resulting distortion is not 
within some threshold, add the training vector to the code book. 
Continue in this fashion until the code book has enough words. This 
technique has been used in the statistical clustering literature (15) 

Product Codes 

In some cases a product code book may provide a good initial guess. 
For example, if one wishes to design a code book for a k-dimensional 
VQ with M = 2kR code words for some integer R ,  then one can use the 
product of k scalar quantizers with aR words each. Thus, if q(x)  is a 

scalar quantizer, then Q( x(l), ... , x (k))= (q ( x(O)), ... , q(x 
(k)), the Cartesian product of the scalar quantizers, is a vector 

~ quantizer. This technique will not work if R is not an integer. In 
general other product structures can be used, e.g., one could first 
design a one dimensional quantizer q from scratch (perhaps using a 
uniform quantizer as an initial guess). One could then use (q( x (0) 
, q( x(1)) as an initial guess to design a good two-dimensional 
quantizer Q(x(0) , x(1) ) . One could then initiate a three dimensional 
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VQ design with the product (q( x(0) ) , Q( x(1 )  , x(2) ) ) as an initial 
guess. One could continue in this way to construct higher dimensional 
quantizers until the final size is reached. 

Splitting 

Linde et al. introduced a technique that resembles the product code 
initialization in that it grows large code books from small ones, but 
differs in that it does not require an integral number of bits per 
symbol (I4). The basic idea is this: The globally optimal rate 0 code 
book of a training sequence is the centroid of the entire sequence. 
The one code word, say w(O), in this code book can be tlsplittt into two 
code words, w(0) and w(O)+d, where a is a vector of small Euclidean 
norm. This new code book has two words and can be no worse than the 
previous code book since it contains the previous code book. The 
Lloyd algorithm can be run on this code book to produce a good 
resolution 1 code. When complete, the training sequence can be 
divided into two smaller training sequences (one for each of the two 
binary code words). For each of these sub-training sequences and the 
corresponding single reproduction vector we can repeat the design 
process: each of the code words in the new code book is split, forming 

an initial guess for a rate 2 bit code book, and the Lloyd iteration 
is run to convergence, producing a binary code book for the 
corresponding sub-training sequence. One continues in this manner, 
using a good rate r code book to form an initial rate r+l code book by 
splitting. This algorithm provides a complete design technique from 
scratch on a training sequence based on a training sequence. Another 
approach to splitting is an application of the Irgreedytt decision tree 
design(23): Instead of splitting every node in a given level or 
depth of the tree together, split one node at a time by only splitting 
that node contributing the largest distortion to the overall 
distortion. In other words, each time the @Iworstt1 node is split. If 
a particular branch reaches the final permitted depth of the tree, it 
is then no longer permitted to split. This technique was suggested 
for code design in (6) and again provides a means of building a code 
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book from scratch. As we shall see, these designs provide a useful 
tree structure to the VQ that can be exploited for fast encoding. Yet 
another alternative is to begin with, say, a random code. Each new 
training vector is then associated with one of the M current code 
words and the training vector is added to a corresponding cluster or 
group. The code word for that group is then replaced by the centroid 
of all training vectors in the group, including the new addition. 
This is in fact the way the original k-means algorithm operated (12) 

Painvise Nearest Neighbor Merging 

An alternative scheme for producing an initial guess is to begin by 
considering every member of the training sequence as a cluster. At 
each step one chooses a pair of two clusters and merges them by 
grouping the vectors in each in a new common cluster and assigning the 
new cluster its centroid as a code word. One can choose the pair that 
provides the best possible change in average distortion or 
approximately so ( 6 3 1 6 4 )  

We close this section by observing that in place of the Lloyd 
algorithm, one can also iteratively design VQ code books by using 
standard gradient search algorithms ( 1 6 )  

CONSTRAINED MEMORYLESS QUANTIZERS 

A serious problem with an ordinary VQ is that its complexity and 
memory grow exponentially with resolution. Although the general 
structure of such searches is amenable to implementation using VLSI 
systolic arrays (17,181 , any reduction in search complexity permits 
better performance at a given resolution. In the special case of mean 
squared error fidelity criteria, there are a variety of tricks that 
can be used to reduce the complexity of full searching of arbitrary 
code books (19) More generally, however, the easiest means of 
reducing search complexity is to impose additional structure on the 
code book in order to permit rapid searches for nearest neighbors or 
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almost-nearest neighbors. The resulting loss of optimality may be 
compensated by the reduced implementation complexity. This can 
provide higher quality for a given rate and complexity, e.g., by 
permitting larger vector dimensions. Variations of the Lloyd 
algorithm can be run in order to produce a good code having the 
desired structure. Some of the code structures that have been studied 
are mentioned below: 

Tree-Searched VQ 

In a tree-searched VQ the full search of available codewords is 
replaced by a suboptimal tree search. The codeword is selected by a 
sequence of binary decisions instead of a single large search. 
(20'54'21'22'19'63'64). The advantage is that the complexity of the 
search will be linear in rate instead of exponential in rate. A 

disadvantage is that general algorithms providing good suboptimal 
searches for general codebooks are not known. A classical problem in 
computer science is to find fast nearest neighbor tree searches for 
unstructured code books. If, however, the code book is constructed 
with an eventual tree search in mind (a freedom not always possible in 
the computer science applications), then good design algorithms do 
exist, as considered next. 

Tree-Structured VQ 

A tree-structured vector quantizer (TSVQ) is an example of a tree- 
searched code where the codebook itself is forced to have a tree 
structure and hence the tree search algorithm is natural. In 
particular, the encoder makes R binary distortion computations and 
comparisons instead of a single search requiring 2 ( NR) distortion 
computations. The first tree-search and tree-structured codes were 
designed by a variation of the splitting algorithm of VQ design: Use 
the splitting algorithm to design a complete code book and do not run 
the Lloyd algorithm on the final complete code book. Instead retain 
the entire tree used in the design, that is, all of the binary code 
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books and the order in which they are used. This provides the TSVQ 
which is encoded by finding the minimum distortion path through the R 
layers of the tree; that is, one makes a sequence of R minimum 
distortion comparisons using a sequence of binary codes. After the 
final selection one achieves a terminal node (leaf) of the tree, which 
corresponds to the final code word. The decoder need only have the 
final code book and is a table lookup as before. A TSVQ is 
suboptimal because of its constrained structure, but it has two 
important advantages: It has low complexity and a fast encoder in 
comparison with an ordinary VQ since it needs to make only R binary 
comparisons instead of 2R comparisons for a code book of size 2R. In 
addition, the code has a nice successive approximation property in 
that each additional bit in the code word provides increased fidelity 
of the reproduction. This is a useful property, for example, in 
systems where the rate may be changed due to available communication 
channel capacity or where the communication link is slow and it is 
useful to get ever better quality reproduction as additional bits 
arrive. 

Multistep VQ 

Multistep VQ is a special case of tree-searched VQ where the same code 
book is used at all nodes at a given depth of the tree. This is 
usually accomplished by coding an error or residual produced by 
encoding the original signal using the code books previously 
encountered in the tree. For example, the first level does a coarse 
quantization of the input vector. The second level quantizes the 
difference of the original vector and the first level reproduction. 
The second level reproduction is formed by adding the first level 
reproduction to the second level error reproduction. The third level 
then quantizes the error resulting in the second level reproduction, 

( 2 4 )  and so on 

218 



Hi-rarchical VQ 

A VQ encoder can be constructed with a hierarchical structure, either 
by using long term parameter estimates to choose short term code 
books (25) or by using a sequence of ever longer dimension table 
lookups with a fixed code book size (26) 

Product Codes 

A s  previously described, a VQ code book can be decomposed into a 
Cartesian product of smaller code books, a typical decomposition being 
into code books for gain (energy, mean, residual energy) and shape. 
Separate attributes are coded separately, but the coding is 
interdependent because the selection of specific code books and the 
distortion measure can depend on previously chosen code 
words (20,27,28) 

Transform VQ 

As a variation on a traditional scalar quantization technique, one can 
take a transform of a large window of data and then use VQ on the 
resulting transformed vectors (29). A similar (and older) technique 
is to filter the input process into subbands and use the vector 
generalization of subband coding by applying VQ to the separate 
outputs (30,31). By generalizing the notion of a transform to include 
any preprocessing of the data to enhance important features or well 
match human senses, good codes can often be found by combining linear 
filtering (possibly two dimensional) and VQ (32) 

RECURSIVE QUANTIZERS 

A VQ can be made to have memory by having a different code book for 
each state of the code. The encoder is given an input and a state and 
produces both an index of a code word in the state code book and a 
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next state. The decoder tracks the state in order to decode using the 
correct code book. Two forms of recursive VQ have been extensively 
studied in recent years. The first is predictive VQ (33,16), a natural 
extension of predictive quantization (or DPCM) to vectors wherein a 
linear vector predictor is formed based on the decoded reproduction 
and subtracted from the input. The resulting residual is then put 
into a VQ. The second approach is finite state VQ (FSVQ) , which is a 
form of switched VQ consisting of a finite collection of codebooks 
(each associated with an encoder state) together with a next-state 
rule which determines the next codebook from the current one and the 
encoded word. Finite state codes were introduced by Shannon (62) and 
design algorithms for vector quantization were developed in 
( 3 4 ’ 3 5 r 3 6 t 3 7 ) .  Given the next-state rule, the design goal is to have 
an intelligent rule for selecting future code books based on past 
choices. These designs can be based on arguments from prediction 
theory, stochastic automata theory, or classification techniques. The 
latter approach, pioneered in (36,37,38), uses a simple classifier to 
detect important local image attributes such as background or edge 
detection and orientation. This classifier is used to divide a 
training sequence into vectors (blocks) which follow each occurrence 
of each class type. The sub-training sequences are then used to 
design memoryless VQs. An FSVQ is then constructed by classifying the 
decoder reproduction rather than the actual input, thus closing the 
loop and permitting the decoder to track the encoder state from a 
knowledge of the initial state and the received code words. These 
codes have produced excellent quality monochromatic images at 1/3 to 
1/2 bit per pixel and real-time hardware implementations have been 
designed (39) 

A general theoretical treatment of recursive VQ may be found in a 
recent book by Gabor and Gyorfi ( 4 0 )  

TRELLIS ENCODERS 

If the decoder is a recursive VQ, then superior performance can be 
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obtained by replacing the encoder by a trellis encoder (or delayed 
decision or multipath encoder). This produces a trellis encoding 
system which is designed using a variation of the Lloyd algorithm and 
such systems have proved quite effective in waveform coding 

. A s  with VQ, one can also design trellis applications 
codes by using gradient search techniques instead of the Lloyd 

(41,42,43) 

algorithm (44,45) 

MODEL VQ 

Perhaps the most successful application of VQ to date has been that of 
LPC VQ, a form of model VQ wherein one codes an autoregressive (all- 
pole) model of a window of speech instead of the waveform 
itself (14’20). Here a complicated distortion measure such as the 
Itakura-Saito distortion is used, but the Lloyd algorithm still works 
easily since the distortion can still be written as an inner product 
and a simple centroid computed. By grouping several LPC vectors 
together, one can achieve even lower rates by similar techniques using 

. Model coders can be combined with matrix quantization 
waveform VQ to form a variety of hybrid and adaptive systems, e.g., 
(49,50,41,51,17) 

(46,47,48) 

VARIABLE RATE VQ 

In many coding applications the activity of the data can vary widely 
over time. In such applications it is often useful to use variable 
rate codes, that is, codes that can use more bits for active vectors 
and fewer bits for dormant ones. The cost is in added buffering and 
software to ensure synchronization and possibly to meet a fixed rate 
communication channel requirement, but this cost is often justified by 
significant performance improvement. One approach is to simply 
combine VQ with traditional noiseless coding techniques. (See, e.g., 
(52) . )  Another approach is to design an inherently variable-rate VQ 

by using tree pruning algorithms from the theory of decision tree 
design to produce optimal variable-length subtrees from tree- 
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structured vector quantizers (53). Here one which first designs a 
fixed rate tree-structured VQ using a Lloyd algorithm and then 
I1prunes1l the resulting tree using an extension of a decision tree 
design technique of Breiman, Friedman, Olshen, and Stone (23). By 
removing the leaves of a complete tree in an optimal fashion, one 
obtains a collection of codes with distortion-rate pairs that can 
strictly dominate even full searched unstructured VQ. The resulting 
system is simple in comparison with noiseless codes for such large 
alphabets and has the successive approximation property of TSVQ that 
each bit improves the fidelity. Hence such codes are well suited to 
applications where one wishes to improve the quality of an image (or a 
selected portion) as additional bits arrive. Traditionally such 
successive improvement has been accomplished by transform coding 
sending additional coefficients. The VQ approach has the potential 
for a smoother and locally optimal sequence of improvements. 

I WHERE NEXT? 

The emphasis in VQ appears to have shifted from research to 
development, in particular to real-time VLSI implementations of speech 
and image coders at low and medium rates. In spite of this drift, 
several interesting possible directions for future research exist, 
among them being: 

1. 

2. 

3 .  

Fine tuning and comparing the many VQ variations with 
traditional transform techniques for a variety of data types, 
e.g., SAR, medical, video, and multispectral images. 

Combined VQ and signal processing (e.g., transforming and 
windowing and the incorporation of models for human vision 
and voice into the signal processing and distortion measures) 
for the best possible quality compression at target bit 
rates. 

Real time implementation using state-of-the art custom and 

222 



semi-custom chips. 

4 .  Applications of VQ to speech and image recognition. 
Understanding the theoretical connections between clustering 
with minimum discrimination information distortion measures 
and Markov source modeling. Designing speech and image 
compression systems that are matched to subsequent processing 
by machine or human experts. 

5. Using digital or analog associative or Hopfield memories for 
VQ implementation. Since VQ does not suffer much if a code 
word close to the nearest neighbor is selected instead of an 
exact nearest neighbor (unlike the case in error control 
coding), associative memories are well suited to this 
application. 
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